Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Org Biomol Chem ; 22(13): 2580-2595, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38441115

RESUMEN

The JFH coupling constants in fluorinated amino alcohols were investigated through experimental and theoretical approaches. The experimental JFH couplings were only reproduced theoretically when explicit solvation through molecular dynamics (MD) simulations was conducted in DMSO as the solvent. The combination of MD conformation sampling and DFT NMR spin-spin coupling calculations for these compounds reveals the simultaneous presence of through-space (TS) and hydrogen bond (H-bond) assisted JFH coupling between fluorine and hydrogen of the NH group. Furthermore, MD simulations indicate that the hydrogen in the amino group participates in both an intermolecular bifurcated H-bond with DMSO and in transmitting the observed JFH coupling. The contribution of TS to the JFH coupling is due to the spatial proximity of the fluorine and the NH group, aided by a combination of the non-bonding transmission pathway and the hydrogen bonding pathway. The experimental JFH coupling observed for the molecules studied should be represented as 4TS/1hJFH coupling.

2.
J Chem Phys ; 160(11)2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38497474

RESUMEN

Treating 195Pt nuclear magnetic resonance parameters in solution remains a considerable challenge from a quantum chemistry point of view, requiring a high level of theory that simultaneously takes into account the relativistic effects, the dynamic treatment of the solvent-solute system, and the dynamic electron correlation. A combination of Car-Parrinello molecular dynamics (CPMD) and relativistic calculations based on two-component zeroth order regular approximation spin-orbit Kohn-Sham (2c-ZKS) and four-component Dirac-Kohn-Sham (4c-DKS) Hamiltonians is performed to address the solvent effect (water) on the conformational changes and JPtPt1 coupling. A series of bridged PtIII dinuclear complexes [L1-Pt2(NH3)4(Am)2-L2]n+ (Am = α-pyrrolidonate and pivalamidate; L = H2O, Cl-, and Br-) are studied. The computed Pt-Pt coupling is strongly dependent on the conformational dynamics of the complexes, which, in turn, is correlated with the trans influence among axial ligands and with the angle N-C-O from the bridging ligands. The J-coupling is decomposed in terms of dynamic contributions. The decomposition reveals that the vibrational and explicit solvation contributions reduce JPtPt1 of diaquo complexes (L1 = L2 = H2O) in comparison to the static gas-phase magnitude, whereas the implicit solvation and bulk contributions correspond to an increase in JPtPt1 in dihalo (L1 = L2 = X-) and aquahalo (L1 = H2O; L2 = X-) complexes. Relativistic treatment combined with CPMD shows that the 2c-ZKS Hamiltonian performs as well as 4c-DKS for the JPtPt1 coupling.

3.
Chemosphere ; 318: 137949, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36709842

RESUMEN

Microplastics can act as vectors of a wide class of contaminants in aquatic environments. The sorption behavior of two hormones known to cause adverse effects in biota even in low concentrations (testosterone-TTR and progesterone-PGT), and a pesticide with a high environmental persistence known as endocrine disruptor chemical (atrazine-ATZ) onto polyamide (PA) microplastics is investigated under different aquatic matrices using kinetic and isotherm experiments. The sorption equilibrium is achieved in 48 h, and the experimental results are better fitted by pseudo-2nd-order model. Langmuir isotherm better describes the sorption of the contaminants onto PA microplastics. PGT presents the highest sorption efficiency at around 90%, followed by TTR at 70% and ATZ at approximately 20%. Moreover, ATZ is the contaminant with the highest desorption efficiency (∼65%), indicating its preference for staying solubilized in water. Combining classical molecular dynamics and density functional theory calculations, the sorption energies were calculated as 12-15 kcal mol-1, 13-16 kcal mol-1, and 19-22 kcal mol-1 for PGT, TTR, and ATZ, respectively, showing that PGT needs less energy to be transferred from the solvent network to the PA surface, in agreement with experimental results. The sorption mechanism is driven by hydrogen bonds onto PA outer surface, while the electrostatic interactions dominate the PA inner surface sorption. Moreover, the sorption efficiency is statistically different between the investigated matrices, indicating that physicochemical characteristics of water systems could influence the interactions between PA-contaminant. In seawater, the phenomena of salting-out/in and competitive sorption with saline ions are observed for three contaminants. The PA-contaminant complexes are more polar and soluble than the dissociated ones, which increases the contaminant's co-transport by PA in water.


Asunto(s)
Atrazina , Contaminantes Químicos del Agua , Microplásticos/química , Nylons , Plásticos/química , Progesterona , Testosterona , Contaminantes Químicos del Agua/análisis , Agua , Adsorción
4.
Phys Chem Chem Phys ; 23(35): 19659-19672, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34524295

RESUMEN

Protonation equilibria are known to vary from the bulk to microdroplet conditions, which could induce many chemical and physical phenomena. Protonated p-aminobenzoic acid (PABA + H+) can be considered a model for probing the protonation dynamics in an evaporating droplet, as its protonation equilibrium is highly dependent on the formation conditions from solution via atmospheric pressure ionization sources. Experiments using diverse experimental techniques have shown that protic solvents allow formation of the O-protomer (PABA protonated in the carboxylic acid group) stable in the gas phase, while aprotic solvents yield the N-protomer (protonated in the amino group) that is the most stable protomer in solution. In this work, we explore the protonation equilibrium of PABA solvated by different numbers of water molecules (n = 0 to 32) using ab initio molecular dynamics. For n = 8-32, the protonation is either at the NH2 group or in the solvent network. The solvent network interacts with the carboxylic acid group, but there is no complete proton transfer to form the O-protomer. For smaller clusters, however, solvent-mediated proton transfers to the carboxylic acid were observed, both via the Grotthuss mechanism and the vehicle or shuttle mechanism (for n = 1 and 2). Thermodynamic considerations allowed a description of the origins of the kinetic trapping effect, which explains the observation of the solution structure in the gas phase. This effect likely occurs in the final evaporation steps, which are outside the droplet size range covered by previous classical molecular dynamics simulations of charged droplets. These results may be considered relevant in determining the nature of the species observed in the ubiquitous ESI based mass spectrometry analysis, and in general for droplet chemistry, explaining how protonation equilibria are drastically changed from bulk to microdroplet conditions.

5.
Phys Chem Chem Phys ; 23(22): 12864-12880, 2021 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-34075921

RESUMEN

An ab initio molecular dynamics investigation of the solvent effect (water) on the structural parameters, 195Pt NMR spin-spin coupling constants (SSCCs) and chemical shifts of a series of pyridonate-bridged PtIII dinuclear complexes is performed using Kohn-Sham (KS) Car-Parrinello molecular dynamics (CPMD) and relativistic hybrid KS NMR calculations. The indirect solvent effect (via structural changes) has a dramatic effect on the 1JPtPt SSCCs. The complexes exhibit a strong trans influence in solution, where the Pt-Pt bond lengthens with increasing axial ligand σ-donor strength. In the diaqua complex, where the solvent effect is more pronounced, the SSCCs averaged for CPMD configurations with explicit plus implicit solvation agree much better with the experimental data, while the calculations for static geometry and CPMD unsolvated configurations show large deviations with respect to experiment. The combination of CPMD with hybrid KS NMR calculations provides a much more realistic computational model that reproduces the large magnitudes of 1JPtPt and 195Pt chemical shifts. An analysis of 1JPtPt in terms of localized and canonical orbitals shows that the SSCCs are driven by changes in the s-character of the natural atomic orbitals of Pt atoms, which affect the 'Fermi contact' mechanism.

6.
J Phys Chem A ; 123(40): 8583-8594, 2019 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-31517493

RESUMEN

This study expands the knowledge on the conformational preference of 1,3-amino alcohols in the gas phase and in solution. By employing Fourier transform infrared spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, density functional theory (DFT) calculations, quantum theory of atoms in molecules (QTAIM), natural bond orbital (NBO) analysis, and molecular dynamics (MD), the compounds 3-aminopropan-1-ol (1), 3-methylaminopropan-1-ol (2), and 3-dimethylaminopropan-1-ol (3) are evaluated. The results show that the most stable conformation of each compound in the gas phase and in nonpolar solvents exhibited an O-H···N intramolecular hydrogen bond (IHB). Based on the experimental and theoretical OH-stretching frequencies, the IHB becomes stronger from 1 to 3. In addition, from the experimental NMR J-couplings, the IHB conformers are predominant in nonbasic solvents, representing 70-80% of the conformational equilibrium, while in basic solvents, such conformers only represent 10%. DFT calculations and QTAIM analysis in the gas phase support the occurrence of IHBs in these compounds. The MD simulation indicates that the non-hydrogen-bonded conformers are the lowest energy conformations in the solution because of molecular interactions with the solvent, while they are absent in the implicit solvation model based on density. NBO analysis suggests that methyl groups attached on the nitrogen atom affect the charge transfer energy involved in the IHB. This effect occurs mostly because of a decrease in the s-character of the LPN orbital along with weakening of the charge transfer from LPN to σ*OH, which is caused by an increase in the C-C-N bond angle.

7.
Phys Chem Chem Phys ; 19(25): 16904-16913, 2017 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-28628184

RESUMEN

Intramolecular hydrogen bonding (IAHB) is one of the most important intramolecular interactions and a critical element in adopted molecular arrangements. Moreover, slight substitution in a molecule can affect its strength to a great extent. It is well established that alkyl groups play a positive role in IAHB strength. However, the effects that drive it are specific to each system. To investigate the influence of IAHB and its strength dependency on different acyclic compounds, the conformational preferences of propane-1,3-diol, 3-methoxypropan-1-ol, 3-ethoxypropan-1-ol, 3-isopropoxypropan-1-ol, 3-(tert-butoxy)propan-1-ol, butane-1,3-diol, 3-methoxybutan-1-ol, 3-methylbutane-1-diol, and 3-methoxy-3-methylbutan-1-ol were evaluated experimentally using infrared spectroscopy theoretically supported by topological and natural bond orbital analyses. The most stable conformation of each compound exhibited IAHB and these conformers are more populated in the equilibrium for all studied compounds. Experimental infrared and topological data suggest that the strength of IAHB increases for each methyl group addition. NBO analyses indicate that methyl groups in different positions related to an OH moiety affect the charge transfer energy involved in intramolecular hydrogen bonding. This occurs mostly due to an increase in the spn-hybridized lone pair (LP1O) contribution to the charge transfer , which is a result of changes in s-character and orbital energy caused by geometrical rearrangements, rehybridization, and/or electronic effects.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...